

Runtime Verification with Predictive Semantics

Xian Zhang Martin Leucker Wei Dong

Norfolk, April 2012

Characterisation

► Verifies (partially) correctness properties based on actual executions

- ► Verifies (partially) correctness properties based on actual executions
- Simple verification technique

- ► Verifies (partially) correctness properties based on actual executions
- Simple verification technique
- Complementing

- Verifies (partially) correctness properties based on actual executions
 - Simple verification technique
 - Complementing
 - Model Checking

- Verifies (partially) correctness properties based on actual executions
- Simple verification technique
- Complementing
 - Model Checking
 - Testing

- Verifies (partially) correctness properties based on actual executions
 - ► Simple verification technique
- Complementing
 - Model Checking
 - Testing
- ▶ Formal: $w \in \mathcal{L}(\varphi)$

Outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

Presentation outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

Runtime Verification for LTL

Observing executions/runs

5/31

Runtime Verification for LTL

Observing executions/runs

Idea

Specify correctness properties in LTL

Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let *p* be an atomic proposition from a finite set of atomic propositions AP. The set of LTL formulae, denoted with LTL, is inductively defined by the following grammar:

$$\varphi ::= true \mid p \mid \varphi \lor \varphi \mid \varphi U \varphi \mid X\varphi \mid$$

$$false \mid \neg p \mid \varphi \land \varphi \mid \varphi R \varphi \mid \bar{X}\varphi \mid$$

$$\neg \varphi$$

Truth Domains

Lattice

- ▶ A lattice is a partially ordered set $(\mathcal{L}, \sqsubseteq)$ where for each $x, y \in \mathcal{L}$, there exists
 - 1. a unique greatest lower bound (glb), which is called the meet of x and y, and is denoted with $x \sqcap y$, and
 - 2. a unique least upper bound (lub), which is called the join of x and y, and is denoted with $x \sqcup y$.
- \blacktriangleright A lattice is called **finite** iff \mathcal{L} is finite.
- ► Every finite lattice has a well-defined unique least element, called bottom, denoted with ⊥,
- ightharpoonup and analogously a greatest element, called top, denoted with \top .

Truth Domains (cont.)

Lattice (cont.)

- ▶ A lattice is distributive, iff $x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z)$, and, dually, $x \sqcup (y \sqcap z) = (x \sqcup y) \sqcap (x \sqcup z)$.
- ▶ In a de Morgan lattice, every element x has a unique dual element \overline{x} , such that $\overline{\overline{x}} = x$ and $x \sqsubseteq y$ implies $\overline{y} \sqsubseteq \overline{x}$.

Definition (Truth domain)

We call \mathcal{L} a truth domain, if it is a finite de Morgan lattice.

LTL's semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word $w = a_0 a_1 \ldots \in \Sigma^{\infty}$

Boolean constants

Boolean combinations

atomic propositions

$$[w \models p]_{\mathfrak{L}} \quad = \quad \begin{cases} \top & \text{if } p \in a_0 \\ \bot & \text{if } p \not\in a_0 \end{cases} \qquad [w \models \neg p]_{\mathfrak{L}} \quad = \quad \begin{cases} \top & \text{if } p \not\in a_0 \\ \bot & \text{if } p \in a_0 \end{cases}$$

next X/weak next X TBD

until/release

$$[w \models \varphi \ U \ \psi]_{\mathfrak{L}} \quad = \quad \begin{cases} \top & \text{there is a } k, 0 \leq k < |w| : [w^k \models \psi]_{\mathfrak{L}} = \top \text{ and} \\ & \text{for all } l \text{ with } 0 \leq l < k : [w^l \models \varphi] = \top \end{cases}$$

$$\frac{TBD}{TBD} \quad \text{else}$$

$$\varphi \ R \ \psi \qquad \equiv \quad \neg (\neg \varphi \ U \ \neg \psi)$$

LTL on finite words

Application area: Specify properties of finite word

LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word $u = a_0 \dots a_{n-1} \in \Sigma^*$ next

$$[u \models X\varphi]_F = \begin{cases} [u^1 \models \varphi]_F & \text{if } u^1 \neq \epsilon \\ \bot & \text{otherwise} \end{cases}$$

weak next

$$[u \models \bar{X}\varphi]_F = \begin{cases} [u^1 \models \varphi]_F & \text{if } u^1 \neq \epsilon \\ \top & \text{otherwise} \end{cases}$$

LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word

LTL on finite, but not completed words

Be Impartial!

 \blacktriangleright go for a final verdict (\top or \bot) only if you really know

LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)

Semantics of FLTL formulae over a word $u = a_0 \dots a_{n-1} \in \Sigma^*$ next

$$[u \models X\varphi]_F = \begin{cases} [u^1 \models \varphi]_F & \text{if } u^1 \neq \epsilon \\ \bot^p & \text{otherwise} \end{cases}$$

weak next

$$[u \models \bar{X}\varphi]_F = \begin{cases} [u^1 \models \varphi]_F & \text{if } u^1 \neq \epsilon \\ \top^p & \text{otherwise} \end{cases}$$

Anticipatory Semantics

Consider possible extensions of the non-completed word

LTL for RV [BLS@FSTTCS'06]

Basic idea

- LTL over infinite words is commonly used for specifying correctness properties
- finite words in RV: prefixes of infinite, so-far unknown words
- re-use existing semantics

LTL for RV [BLS@FSTTCS'06]

Basic idea

- LTL over infinite words is commonly used for specifying correctness properties
- finite words in RV: prefixes of infinite, so-far unknown words
- ► re-use existing semantics

3-valued semantics for LTL over finite words

Impartial

 \blacktriangleright Stay with \top and \bot

17/31

Impartial

▶ Stay with \top and \bot

Anticipatory

- ▶ Go for \top or \bot
- ► Consider XXXfalse

 ϵ \models XXXfalse

Impartial

▶ Stay with \top and \bot

Anticipatory

- ▶ Go for \top or \bot
- ► Consider XXXfalse

 $\epsilon \models XXX false$

 $a \models XXfalse$

Impartial

▶ Stay with \top and \bot

Anticipatory

- ▶ Go for \top or \bot
- ► Consider XXXfalse

```
\epsilon \models XXX false
```

$$a \quad \models \quad XXfalse$$

$$aa \models Xfalse$$

Impartial

▶ Stay with \top and \bot

Anticipatory

- ▶ Go for \top or \bot
- ► Consider XXXfalse

$$\begin{array}{cccc} \epsilon & \models & XXXfalse \\ a & \models & XXfalse \\ aa & \models & Xfalse \\ aaa & \models & false \end{array}$$

Presentation outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

Predictive Semantics

Consider the program to monitor

LTL with Predictive Semantics

Basic idea

finite words in RV: prefixes of infinite, so-far unknown words

20/31

LTL with Predictive Semantics

Basic idea

finite words in RV: prefixes of infinite, so-far unknown words of our program

LTL with Predictive Semantics

Basic idea

finite words in RV: prefixes of infinite, so-far unknown words of our program

A first predictive semantics for LTL over finite words

Too much...

Answers model checking question!

$$[\epsilon \models \varphi] = \begin{cases} & \top & \text{if } \forall \sigma \in \Sigma^{\omega} \text{ with } \sigma \in \mathcal{P} : \epsilon \sigma \models \varphi \\ \\ & \bot & \text{if } \forall \sigma \in \Sigma^{\omega} \text{ with } \sigma \in \mathcal{P} : \epsilon \sigma \not\models \varphi \end{cases}$$
$$? & \text{else}$$

More reasonable...

Use abstraction

- ▶ Use overabstraction of \hat{P}
- with $L(\mathcal{P}) \subseteq L(\hat{\mathcal{P}}) \subseteq \Sigma^{\omega}$

More reasonable...

Use abstraction

- ▶ Use overabstraction of \hat{P}
- with $L(\mathcal{P}) \subseteq L(\hat{\mathcal{P}}) \subseteq \Sigma^{\omega}$

A general predictive semantics

$$[u \models \varphi] = \begin{cases} \top & \text{if } \forall \sigma \in \Sigma^{\omega} \text{ with } u\sigma \in \hat{\mathcal{P}} : u\sigma \models \varphi \\ \bot & \text{if } \forall \sigma \in \Sigma^{\omega} \text{ with } u\sigma \in \hat{\mathcal{P}} : u\sigma \not\models \varphi \end{cases}$$

$$? & \text{else}$$

But ...

How to get \hat{P} ?

- ightharpoonup here, use simple analysis of $\mathcal P$
- find for \mathcal{P} sequential executions of actions over φ 's alphabet
- ▶ obtain finite set *R* of

But . . .

How to get \hat{P} ?

- ightharpoonup here, use simple analysis of \mathcal{P}
- find for \mathcal{P} sequential executions of actions over φ 's alphabet
- ▶ obtain finite set *R* of

Predictive semantics

$$[w \models^{R} \varphi] = \begin{cases} & \top & \text{if } \forall v \in R \ \forall \sigma \in \Sigma^{\omega} : uv\sigma \models \varphi \\ & \bot & \text{if } \forall v \in R \ \forall \sigma \in \Sigma^{\omega} : uv\sigma \not\models \varphi \end{cases}$$
$$? & \text{else}$$

Well ...

Really...

- find sequences av in P
- ▶ send *av* to monitor rather than only *a*

Presentation outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

Implementation

Instrumentation

- ▶ use of AspectJ (*abc*) to obtain events from program
- analysis of strong regions, CFG and PDG to find sequential executions
- ▶ use *Transcut* to inject predictive words

Implementation

A typical usage scenario of our prototype tool Program with Predictive Runtime Monitoring

Transcut

Capability

Implementation

Property

 $G(\texttt{create} \rightarrow G(\texttt{update} \rightarrow \neg F(\texttt{next})))$

Strong Regions and PDG

```
1 Vector v = new Vector(col)
2 Iterator it = v.iterator();
3 v.add(object);
4 for(each element in col){
5     process each element;
6 }
7 it.next();
```


Experimental Results

Setup

used Dacapo benchmarks

Results

	antlr	eclipse	fop	hsqldb	bloat	lucene
class number	224	344	967	385	263	311
method num- ber	2972	3978	6889	5859	3986	3013
predictable shadow ratio	0% (0/23)	7.92% (53/391)	24.65% (83/288)	28.23% (45/124)	17.06% (608/1495)	25% (61/224)
predictable region ratio	0% (0/23)	3.33% (22/360)	7.86% (24/229)	11.83% (14/93)	7.88% (204/1091)	7.3% (15/178)

Presentation outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Implementation and Experimental Results

Conclusion

That's it!

Thanks! - Questions?